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Synopsis 
The role of the capillary end correction in flow analysis of molten lowdensity poly- 

ethylenes has been analyzed. In spite of limitations of accuracy a quantitative approach 
has been undertaken. The results are much more complicated than predicted by Bagley 
in his early reports. The elastic component of the end correction is controlled by shear 
stress and shear modulus. The latter is affected by the size of the subchain between en- 
tangles, M e ,  and by the degree of long-chain branches. Both are eventually dependent 
on the length of the chain, i.e., its molecular weight. In addition shear stress and tem- 
perature affect the process of disentanglement. Capillary end correction increases with 
increasing molecular weight and shear stress and with decreasing temperature. The 
available analysis of branching is still in controversy, and therefore no numerical pa- 
rameters are yet proposed. A consistent theory of the response of entanglement couplings 
to shear forces and temperature is evaluated. 

Introduction 

It is well known that geometry affects viscometric measurements in 
short capillaries.' The need of an end correction may be eliminated by 
using capillaries of high length-to-radius (L/R)  ratio. However, on analyz- 
ing flow behavior of molten polymers in long capillaries, high pressures are 
involved which might significantly affect the viscosity of the melt.2 Addi- 
tional practical reasons dictate the use of relatively short capillaries in 
melt flow viscometers. 

Bagley3 published an empirical method of calculating flow curves, inde- 
pendent of the capillary geometry. This method has been successfully 
used in  flow of polymer  melt^,^-^ polymer solutions,' and other polymeric 
liquids. 

The end correction appears in eq. (1) : 

~m = @ / ( 2 [ ( L / R )  4- NI) (1) 
where T~ is shear stress a t  the wall and N is a fictitious length (expressed as 
number of radii) which takes into account the additional pressure losses 
due to unsteady profile a t  the entrance (establishment of the boundary 
layer) and to the development of elastic potential energy in the melt. By 
measuring flow in a set of capillaries of the same radius but different lengths, 
the values of N a t  various shear rates are graphically obtained, In  polymer 
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melts the correction term N depends mainly on shear conditions and varies 
usually in the range of 0-15. 

His empirical 
corrections have been used by other researchers. Additional analyses of 
end correction are given in the l i t e r a t ~ r e . ~ * ' ~  The hydrodynamic aspect 
of pressure loss at the capillary entrance for inelastic liquids will be dis- 
cussed in a separate article. 

According to Philippoff and Gaskins," the end correction N consists of 
two terms, a viscous component and an elastic one, as follows: 

Bagley3 has shown the dependence of N on shear rate. 

N = in,, + (8&) = in, + in, (2) 

In  eq. (2), m, is the geometrical (Couette) end correction while S ,  repre- 
sents the recoverable elastic shear strain a t  the capillary wall. This last 
term appears whenever normal stresses exist. 

Bagley12*13 used eq. (2) in flow analysis of two polyethylenes, a linear and 
a branched one. He found a constant value of 2 or the viscous term m,. 
By assuming the validity of Hooke's law in shear he showed a linear in- 
crease of N with shear stress, indicating significant higher values for the 
branched polymer. 

Kishi'* correlated values of S,  with the expansion of a polymer jet 
emerging from the capillary, both originated by the melt elasticity. He 
assumed constant values of 0.77 for mu. 

Schott15 divided the end-correction N into three terms: 

N = ml + (s&) + i n 2  (3) 

m2 depends on the entrance angle to the capillary as well as on the tempera- 
ture and shear conditions. 

In  our work we have tried to analyze the role of end correction in flow of 
various low-density polyethylenes a t  different temperatures. We found 
a strong dependence of the end correction on the type of polymer, its molec- 
ular weight, temperature, and shear stress. 

Experimental 
Six commercial low-density polyethylenes samples (A-F) have been 

tested, as shown in Table 1. The molecular weights were estimated accord- 
ing to Peticolas.16 Viscosity a t  150°C. was determined at  shear rates of 
0.5-10 sec.-l by using a modified melt indexer with a capillary of L/R  = 28. 
(The standard ratio is 8.) The end correction N in this range of shear rate 
was found to be around 2. The Newtonian viscosity qo was calculated by 
using the relationship of Ferry," which fitted our data very well: 

1/7 = (1/vo) + B T w  (4) 

In  the case of samples E and F the temperature of 150°C. was considered 
too low, so that their Newtonian viscosity was determined a t  higher tem- 
peratures and extrapolated to 150°C. by using a semilogarithmic depend- 
ence of viscosity on 1/T. 
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The intrinsic viscosity was measured in p-xylene at  85°C. According to  
the literature,18 the correlations are as follows: 

[ ~ ] ] Z , ~ S ~ C .  = 1.28[q],4~, i250c.~ '~~ (5) 

Intrinsic viscosity in a-chloronaphthalene (a-CN) is correlated to the 
molecular weight of linear polyethylene, by 

[ q ] a S N ,  125°C. = 4 x io-4~w00.68 (6) 

The method of PeticolaslG consists of guessing the index of long branches 
fz, and obtaining am by trial and error by using eqs. ( 5 ) ,  (6), (7), and (8). 

7 0 , ~  = 3 X 10-12aw3.4 exp { -2.35(@,/12)) (7) 

fzw = [ r l 3 6 [ . ) 1 l b  (8) 

where the subscripts b and 1 denote branched and linear polymer, respec- 
tively. Both intrinsic viscosities [ q ]  refer to the same am. 

TABLE I 

fiw 

Melt index 
flow 70 of 

Density, index [?Iz [V],-CN (15OoC.), branch- 
Type g./cc. MFI (85°C.) (calc.) poise ing (calc.) 

A 0.915 19.9 0.73 0.58 20,500 1.06 50,000 
B 0.918 6 . 4  0.87 0.69 70,500 1.15 71,000 
C 0.921 1.85 0.88 0.695 234,000 1 . 4  100,000 
D 0.920 2 . 0  0.83 0.66 500,000 1 . 8  127,000 
E 0.917 0.68 0.86 0.685 585,000 1 . 8  135,000 
F 0.924 0 . 3  1.02 0.805 1,870,000 1.9  186,000 

Flow curves at  shear rates of 30-7000 set.-' were obtained by use of an 
Atkinson-Nancarrow r h e ~ m e t e r ~ ~  (Tensometer Ltd., England). This is a 
capillary melt viscometer consisting of nine fixed speeds and capable of 
work in the range of 15-400 atm. The instrument has been modified 
after Skinnerz0 in order to improve the temperature reading as close to the 
die as possible. Temperature control was within *0.5"C. Four capillar- 
ies having the same radius of 1 mm. and L/R ratios of 8.7, 22, 34.7, 45.8 
were used. In  each case values of pressure were plotted against L/R at  
same shear-rates and extrapolated to zero pressure. 

P = 27,[(L/R) + NI (9) 

The shear stresses a t  the wall were obtained by the slope of the graphs. 
Shear rates (noncorrected) were directly calculated by using the speed of 
the piston and the geometry of the capillary die. 
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Theory 

We are chiefly interested ill the evaluation of the elastic component of the 
The latter may be better related to the pressure drop end correction, nz,. 

A p e  due to the gain of elastic energy by the melt. Thus: 

n a ,  = APe/2rW (10) 
According to Philippoff and Gaskins" this pressure drop is identical to the 
normal stress a t  the capillary wall Pll: 

A P ,  = Pi1 = rWSR (11) 

By assuming that the mean value of normal stress over the whole flow 
area should be preferred over the value a t  the wall, we tried to  calculate 
the boundary values for a simple model. The model is a modified Maxwell 
fluid, in which the elastic element is represented by the shear modulus G 
and the viscous component is expressed by a general equation as suggested 
by Gee and Lyon2': 

l /a  = (1/ao) + bT" (12) 

Equation (12) coincides with eq. (4) when n = 1. It also approximates a 
power law when rl0 is relatively large, while Newtonian behavior is ap- 
proached for low shear stresses. 

If the local pressure drop is expressed by 

Ape1  = rS = r2/G (13) 

then the total elastic energy which is continuously supplied to a unit volume 
of fluid as it enters the capillary is given by 

R 

AP, = 2nru(r2/G)dr (14) Q 
where Q is volumetric flow rate, u = local velocity, and 

r = rw(r/R) (15) 

where R is the radius of the capillary. 
(10) and (15) leads to eq. (16): 

Integrating eq. (14) and using eqs. 

On taking the conditions, 1/67n >> [brw"/(n + 6)l and (1/4~0) << [brmn/ 
(n + 4)], the boundaries of i n ,  will be restricted by the proper values of the 
exponent n: 

[(n + 4)/(n + 6>1(~w/4@ 2 nze 2 rw/6G (17) 

(18) 

Assuming that n varies between zero and infinity, the result will be: 

rW/4G 2 me 2 rW/6G 
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The lower boundary has also been claimed by Kriegl.'O It is assumed that 
the actual range for 772, is quite limited. The magnitude of me is thus mainly 
related to the values of shear stress and shear modulus. 

in, = r,/aG (184 

The value of the shear modulus G has been derived by use of the well- 
One gets the following r e l a t i o ~ i s h i p , ~ ~ ~ ~ ~  known theory of rubber elasticity. 

which holds mainly for crosslinked rubbers : 

G = pRT/A!lc (19) 

p is the polymer density, and M ,  is the subchain between points of cross- 
linking. Equation (19) has been corrected for the two loose ends of the 
chain which do not contribute to the elastic response of the network seg- 
ments. This correction leads to the expression: 

G = (pRT/M,)[ I  - 2 ( M C / M ) ]  (20) 

In eq. (ZO), AT represents the molecular weight of the whole original chain 
prior to crosslinking. In our case of molten polyethylene, the use of eqs. 
(19) and (20) has been suggested on replacing M, by M e ,  i.e., the subchains 
between entanglement points.24 The polyethylene chains are visualized 
as an entangled network which closely resembles a crosslinked structure, 
a t  least when the elastic character is analyzed. The second term in eq. 
(20) should also be modified in order to include branched chains which 
consist of several loose ends. Therefore, an equivalent expression for low- 
density polyethylene melt gives : 

G = ( p R T / M e )  [ I  - B ( M e / M ) ]  (21) 

where B 2 2, and this takes into account the actual number of loose ends. 
The latter belong to the long branches In the case of linear chains, 
B = 2. 

The effects of molecular weight, temperature, and shear stress on the 
values of M e  are of utmost importance. Actually not much is known about 
the size of the subchains between points of entanglements, except for the 
idea that entanglements may slip arid change their location along the chain 
due to external forces. 

Further theoretical analysis will be presented after the discussion of the 
experimental data. 

Results and Discussion 
Experimental results of the end correction N show its dependence on 

shear conditions, temperature, and molecular weight for low-density 
polyethylene samples. 

In Figures 1 and 2, N is plotted against rate of shear (uncorrected) yN 
at  different temperatures. The curves are essentially linear on a semilog 
scale with a positive slope. Our data obey the relationship : 

(22) N = p +q log "iv 
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Fig. 1. Dependence of end correction on shear rate a t  various temperatures. 
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Fig. 2. Dependence of end correction on shear rate a t  various temperatures. 

While the slope q is almost equal a t  three different temperatures, the co- 
efficients p and hence the values of N decrease with temperature a t  the 
same shear rate. The reason for using qN instead of rW in these figures is 
due to the fact that Y N  is easily and independently calculated while the 
correct value of rW necessitates the use of the end correction. Equation 
(Ha) should be modified by using the proper relationship between shear 
stress and rate of shear. If the Power law is used, the result becomes: 

112, = K ( + ~ ) ~ ' / ~ G  (23) 

K ,  like apparent viscosity, is temperature sensitive and decreases with 
increasing temperature. On the other hand, G is known from eq. (21) to 
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Fig. 4. Dependence of reduced end correction on shear stress. 

increase with temperature. 
the lower values of m, a t  higher temperatures. 
could be neglected by using a method of superposition. 
of N ,  (to 190OC.) is defined as: 

In this case both parameters K and G affect 
The effect of temperature 

A reduced value 

NR = N(273 + T)/ (273  + 190) (24) 

Such a linear displacement should hold for correlations of m, with T ~ ,  

where only G in eq. (Ma) is temperature-dependent. However, the differ- 
ence between me and N becomes negligible. Figures 3 and 4 show the 
relationship between N ,  and 7,. The curves are almost linear on a semi- 
logarithmic scale, while according to eq. (Ma) a straight line on rectangular 
coordinates is envisioned. . This contradicts the findings of Bagley,I2 
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Fig. 6. Dependence of end correction 011 shear stress for various aw. 

who found a linear dependence of N on 7, for two low-density polyethylenes. 
In  our case Hooke's law in shear is not obeyed, and we postulate that G 
is shear-dependent. 

Another important variable is the molecular weight. In  Figures 5 and 6 
the effect of a, on the curves of N versus Y N  or r,  is clearly shown. 

The temperature was kept a t  190°C. and the values of N are significantly 
higher for higher molecular weights. As before, the correlation with Y N  

is clearer than that with rW. Similar results are shown in Figures 7 and 8 
a t  150°C. However in Figure 8 the values for the three different am 
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Figure 9 shows the change 
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The conclusion from Figure 9 might be that the shear modulus G 

This dependence should be accounted for 
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Fig. 8. Dependence of end correction on shear stress for various am. 
It is interesting to compare our results to those of Schott and Kaghan.26 

They also found the dependence of N on temperature, shear rate, and ATrn 
in the same direction as ours. They also emphasize the small end correc- 
tion for linear polyethylenes, resulting from higher entanglement frequency 
for the latter. It has been well accepted that branched chains are more 
compact and less able to entangle. From eq. (21) we notice that at  con- 
stant temperature G is controlled by the values of M e  and B/M. A linear 
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polyethylene has the smallest value for B = 2, arid M ,  is relatively smaller 
than that for a branched chain, so that G must be larger. 

Johnson and Baer8 got also higher end corrections for higher molecular 
weights. 

A consistent picture which will explain our data is now represented. 
The elastic deformation is due to a network of entangles. The shortest 
chain that shows this effect is one that is tied by physical entanglements to 
two different ones. This may be shown by Figure 1Oa. 

The effect of shear on flowing chains (Fig. lob )  will cause the entangle- 
ment points to slip towards the center. When each chain has only two 
coupling points, increasing shear will eventually unify them to the state 
shown in Figure lOc, which is no more considered as a network structure. 
The critical molecular weight ( M , )  on the plot of 9 versus aw which indi- 
cates the start of an entangled network should therefore increase a t  higher 
shear rates. In  contradiction, Porter and Johnsonz7 indicated a constant 
M,, while the lines a t  increasing shear rates show progressively decreasing 
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slopes beyond the critical point. Schreiber et a1.2s found two distinctive 
M ,  for their polyethylenes of a broad Rw range. The second M ,  decreases 
with shear rate and represents the limit of Newtonian flow. S ~ h r e i b e r ~ ~  
postulates a third possibility, in which both the critical gw and the slopes 
are shear-sensitive. 

Though Schreiber admits that the model shown in Figure l l c  is most 
logical, he states that it has not yet been confirmed experimentally. We 
have, however, recently noticed such relationships for whole linear poly- 
ethylenes. Details about these findings will be published separately. 

On increasing molecular weight, it is evident that more entanglement 
points will appear. Normally it is believed that the subchain between 
entangles, M,, remains statistically constant a t  any chain length. The 
shearing forces will, however, cause slippage of the entanglement points. 

The three models are shown in Figure 11. 

Increase shear 

iTw (log) 

Increase shear Increase shear 

Fig. 11. Models of ( a )  Porter aiid Johnson,27 ( b )  Schreiber et a1.,28 and ( c )  Schreiber.29 

While total disentanglement is not possible for concentrated solutions or 
polymer melts, the size of the average subchain will eventually decrease. 
This reduction is more effective for the shorter chains and will be progres- 
sively less pronounced for the longer ones. Therefore higher shear will 
reduce M ,  arid thus higher values of G are obtained [by eq. (2l)l. Such an 
increase of G with T has been experimentally found for polyethylene by 
Benbow arid H o ~ e l l s . ~ ~  Similar increase of shear modulus with shear 
rate (in a limited range) has been confirmed by Vinogradov and B~lk in .~ l  

On increasing Hw, the size of M e  becomes less affected by shear forces. 
The conclusion is that under identical shear conditions, larger molecules 
have larger average M,. As we deal with branched chains, the value of B 
in eq. (21) and its dependence on gw should be verified. As stated before, 
it is the long-chain branches that modify the rheological properties. The 
average number of long-chain branches per molecule has been calculated 
by Zimm and S t ~ c k m a y e r ~ ~  by using the branching parameter g. By 
definition: 

g = (S2)b/(S2) I = (R2)b/(R2) 1 (25) 
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where S is the radius of gyration of the chain, R is the end-to-end distance, 
and b and 1 denote branched and linear polymer chains, respectively. 

Equation (25) may be rewritten as: 

[710 [ q l ]  are intrinsic viscosities. 
Zimm and Kilb33 claim that g is better correlated by: 

Equation (27) suggests exceptionally high values for long-chain branches 
per molecule for our polyethylene samples. For the same reasons, Guillet3* 
preferred to use eq. (26). The latter made a slight correction for the effect 
of short branches on 9. They found approximate constant frequencies of 
branches on using eq. (26) but increasing frequencies with ATw when eq. 
(27) was adopted. The discrepancy between the various approaches is 
quite large, and an exact quantitative analysis may be unfortunately 
doubted. The dependence of the number of long branches on g is given 
in the l i t e r a t ~ r e . ~ ~ . ~ ~  We have calculated the number of branches per 
1000 CH2 groups (frequency) for our polyethylene samples. By use of 
either eq. (26) or (27) we have verified that the frequency of branching 
increases with ATw. Therefore the group B/M in eq. (21) increases a t  
higher awl and this results in smaller values of G. We, therefore, postulate 
that the shear modulus decreases a t  higher molecular weights of branched 
polyethylenes. Higher frequency of long-chain branches for higher &fw 
was also predicted by B e a ~ l e y ~ ~  and verified by others.38 In addition, 
Sperati et al.25 showed that the shear modulus drops on increase of long- 
chain branching. 

On using eq. (21) and calculating branching frequency according to 
eq. (26) and data from the literature, we arrive a t  a value of M e  in the 
vicinity of 15,000-20,000. These results are relatively 3-4 times the critical 
&fm ( M J  for polyethylene, but in line with recent publications of Schreiber, 
Rudin, arid B a g l e ~ . ~ ~  The effects of shear stress and temperature on M e  
should not be underestimated. 

The surprising behavior a t  150°C. (as shown in Fig. 8) indicates that 
molecular weight does not affect the end correction dependence on rw 
at low temperatures. However, because of the marked effect of a, 011 

K in eq. (23), Figure 7 does show the role of aw on a plot of N versus +N. 
Porter and Johnson@ and Tung41 claim that the effectiveness of disentangle- 
ment increases a t  higher temperatures because of better mobility. That is 
the reason that a t  low temperatures branched polyethylenes show rela- 
tively higher frequencies of entanglement which resemble those of linear 
chains. We have also calculated data from Arai and A ~ y a m a ~ ~  that show 
that on a plot of end correction N versus rwl lines for different ATw coin- 
cide. Temperature should therefore also affect the value of the critical 
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am for entanglements. 
where a, increases a t  rising temperatures. 

This is actually shown by Porter and 

This work is partly based on the Sc.D. thesis of M. Narkis, to be submitted to the De- 
partment of Chemical Engineering, Israel Institute of Technology. 
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RCsumC 
Le rble de la correction de l’extrkmitd du cappilaire dans des analyses d’6coulement de 

poly6thylEnes fondus de basse densit6 a 6t6 analys6: en d6pit de limitations dues B 
l’impr6cision une approche quantitative a 6t6 entreprise. Les r6sultats sont beaucoup 
plus compliqds que ceux pr6dits par Bagley dans ses rapports anterieurs. Le composant 
Blastique de la correction est contrbl6 par la tension de cisaillement et le mode de cisaille- 
ment; ce dernier est affect6 par la grandeur de la partie des chaines entre les enlacements 
successifs M ,  et par le degr6 de ramifications B longue chaine. Ces deux sont Bventuelle- 
ment dependants de la longueur de la chaine c.$.d. du poids mol6culaire. En outre, la 
tension de cisaillement et la tempbratwe affectent le processus de d6senlacement. La 
correction pour l’extr6mit6 du cappilaire croit avec augmentation du poids mol6culaire 
et la tension de cisaillement e t  avec une diminution de temp6rature. L’analyse disponible 
du degr6 de ramification est encore contest6e, et, de ce fait, aucun parametre numkrique 
n’est propos6 jusqu’h pr6sent. Une th6orie consistante relative B la r6ponse de ces 
enchevih-ements aux forces de cisaillement e t  B la temp6rature est pr6sent6e. 

Zusammenfassung 
Die Rolle der Korrektur fur das Kapillarenende bei der Fliessanalyse von geschmol- 

zenen Polyathylenen niedriger Dichte wurde untersucht. Trotz der durch die Versuchs- 
genauigkeit gegebenen Beschrankungen wurde eine quantitative Analyse unternommen. 
Die Ergebnisse sind vie1 komplizierter als nach den fruheren Berichten yon Bagley zu 
erwarten war. Die elastische Komponente der Endkorrektur wird durch Schubspannung 
und Schubmodul bestimmt. Letzterer wird durch die Grosse der Subketten zwischen 
Verschlingungsstellen, Me,  und durch den Grad der Langkettenverzweigung beeinflusst. 
Beide hangen von der Lange der Kette, d.h. ihrem Molekulargewicht ab. Ausserdem 
beeinflussen Schubspannung und Temperatur den Entschlingungsprozess. Die Korrek- 
tur fur das Kapillarenende nimmt mit steigendem Molekulargewicht und steigender 
Schubspannung sowie mit fallender Temperatur zu. Bei der Verzweigungsanalyse beste- 
hen noch Widerspruche, und daher werden noch keine numerischen Werte angegeben. 
Eine konsistente Theorie fur das Verhalten einer Verschlingungskopplung gegen Schuh- 
krafte und gegen die Temperatur wird aufgestellt. 
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